Réduction des endomorphismes normaux

Théorème

Soient E un espace euclidien, et $u \in \mathcal{L}(E)$ un endomorphisme normal. Alors il existe une base orthognale \mathscr{B} de E tel que

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & \\ & & \lambda_r & & \\ & & & \tau_1 & \\ & & & \ddots & \\ & & & & \tau_s \end{pmatrix}$$

où pour tout $i \in [1, r]$, $\lambda_i \in \mathbb{R}$ et pour tout $j \in [1, s]$:

$$\tau_j = \begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix}$$

Lemme 1

Soient $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E stable par u. Alors F^{\perp} est stable par u^* .

Preuve:

Soit $y \in F^{\perp}$, on a par définition, pour tout $x \in F$:

$$\langle x, y \rangle = 0$$

et puisque F est u-stable :

$$\langle x, u^*(y) \rangle = \langle u(x), y \rangle = 0$$

Ainsi $u^*(y) \in F^{\perp} : F^{\perp}$ est donc u^* -stable.

Lemme 2

Soit u un endomorphisme normal de E. Si E_{λ} est un sous-espace propre de u, alors E_{λ}^{\perp} est stable par u.

Preuve:

Comme u et u^* commutent, E_{λ} est stable par u^* . En appliquant le lemme 1 à E_{λ} et u^* on obtient la stabilité de E_{λ} par $u = (u^*)^*$.

Lemme 3

Supposons E de dimension 2. Soit u un endomorphisme normal de E sans aleur propre réelle. Alors dans toute base orthonormée de E la matrice de u s'écrit

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Preuve:

Soit \mathcal{B} une base orthonormée de E, on note

$$M = \operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

D'un part $b \neq 0$ puisque u n'admet pas de valeur propre réelle, d'autre part ${}^tMM = M{}^tM$ ce qui donne :

(i)
$$a^2 + c^2 = a^2 + b^2$$

(ii)
$$ab + cd = ac + bd$$

De (i) on obtient que $b=\pm c$, or si b=c la matrice M est symétrique donc b=-c. La deuxième équation devient alors

$$2(a-d)b = 0$$

et comme $b \neq 0$ on a a = d. D'où le résultat.

Démonstration:

On procède par récurrence sur $n = \dim(E)$.

- Initialisation : Pour n = 1, évident.
- **Hérédité**: On suppose le résultat vrai jusqu'au rang n-1 montrons le au rang n. On distingue deux cas.
 - (i) Supposons que u admette une valeur propre réelle λ . Posons

$$E_{\lambda} = \operatorname{Ker}(u - \lambda Id)$$
 et $F = E_{\lambda}^{\perp}$

D'après les lemmes 1 et 2 F est stable par u et u^* . Puisque $u_{|F}$ est normal et $\dim(F) \leq n-1$ on peut appliquer l'hypothèse de récurrence à F pour obtenir une base \mathscr{B}_1 dans laquelle la matrice de $u_{|F}$ à la forme voulue et que l'on complète en une base orthonormée de E_{λ} pour obtenir le résultat voulu.

(ii) Sinon u n'admet pas de valeur propre réelle. Soit alors $Q = X^2 - 2\alpha X + \beta$ un facteur irréductible dans $\mathbb{R}[X]$ du polynôme caractéristique χ de u. Posons $N = \mathrm{Ker}(Q(u))$. Comme Q est irréductible dans $\mathbb{R}[X]$ il existe $\lambda \in \mathbb{C}$ tel que :

$$Q(X) = (X - \lambda)(x - \bar{\lambda})$$

Alors $det(u - \lambda Id) = 0$ et

$$\det(Q(u)) = \det(u - \lambda Id) \det(u - \bar{\lambda}Id) = 0.$$

Donc $N \neq \{0\}$. De plus N est stable par u et par u^* (car u est normal). Posons alors $v = u_{|N}$, on a donc $v^* = u_{|N}^*$.

L'endomorphisme v^*v est symétrique donc admet une valeur propre réelle μ . Soit x

un vecteur propre associé à μ . On pose F := Vect(x, u(x)); la famille (x, u(x)) est libre puisque u n'admet pas de valeur propre réelle sur N, donc $\dim(F) = 2$. De plus

$$u^2(x) = 2\alpha u(x) - \beta(x)$$

donc F est stable par u et $F = \text{Vect}\{u(x), u^2(x)\}$ car $\beta \neq 0$. Par suite

$$u^*(u(x)) = v^*v(x) = \mu x \in F$$

et

$$u^*(u^2(x)) = u \circ u^*(u(x)) = \mu u(x) \in F.$$

Donc F est stabe par u^* , ainsi $u_{|F}$ est normal. D'après le lemme 3 dans une base orthonormée \mathscr{B}_2 de F la matrice de $u_{|F}$ est de la forme

$$\tau = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

De plus d'après le lemme, comme F est stable par u et u^* , F^{\perp} est stable par u^* et u, donc $u_{|F^{\perp}}$ est normal. Comme dim $F^{\perp} = n-2 < n$ on peut appliquer l'hypothèse de récurrence qui donne une base \mathcal{B}_1 qui permet de conclure.

Ce qui achève la récurrence.

Référence

• Xavier Gourdon, Les maths en tête: Algèbre